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MEMORANDUM NO 3900

LOW LEVEL SEGMENTATION OF NOISY IMAGERY

R G White

INTRODUCTION

The ultimate aim of an image segmentation process is to divide an original

image into a set of labelled regions. Each of the regions should satisfy

some uniformity criteria. This uniformity may take the form of a low-level

description, such as the constancy of an underlying image intensity, or a

high level description. A high level description may, for example, divide

an agricultural scene into woods and fields or a town into buildings and

roads. For most image understanding purposes the high-level segmentation

will be required as the final output. Such a description could be

generated by matching objects in the image with objects in a data-base of

knowledge.

The severity of the segmentation problem depends upon the amount of

information available. If, for example, scaling and orientation

information exists the problem is easily solved by template matching

techniques. Unfortunately for the majority of cases much less information

is available. Combinational considerations then effectively rule out the

use of such simple procedures except for the smallest of images.

In order to generate a high level description of an image these

combinational problems must be removed before objects may be matched with

the data base. This requires some sort of data reduction. Once a

significant data reduction has been achieved then it should become possible

to use recognition techniques which are more advanced than simple template

matching.

Such techniques may, for example, use a syntactic description of the scene

with patterns being subsequently recognised by string matching [ref 1).

Any data reduction method which is to be used in an approach such as this

must preserve a very large proportion of the information contained in the

original Image whilst removing the uncertainties associated with noise

processes. Initially then a low-level image segmentation Is required to

reduce the data content of the image without reducing its information

content significantly.
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Data reduction should, as mentioned above, effectively merely remove the

noise in an image. There are basically two types of noise to be

considered, additive noise and multiplicative noise. Additive noise is the

type most often encountered. Incoherent imaging systems, such as optical

or infra-red devices, exhibit such noise behaviour. However a large class

of imaging systems exist which employ coherent illumination. Lasers and

radar are both examples of coherent illumination. Images formed using such

illumination are characterised by multiplicative noise or speckle (ref 21.

This is a result of the coherent interference of returns from many

individual scatterers in the object being viewed. The probability density

function for the detected power received from a scene with a uniform

background scattering cross-section is

f (z) -L exp (-z/)(fz 11z

z - detected power

Pz = expected value of the detected power.

Taking the signal to noise ratio to be defined as z 2/,z2, where az2 - (Z-vZ)2

leads to a signal to noise value of 1. Hence a coherent imaging system may

be considered as an example of an extremely noisy system. The segmentation

of coherent images will mainly be considered in this paper although it is

shown that the segmentation procedure described will also work on

incoherent imagery.

2. REVIEW OF SEGMENTATION ALGORITHMS

A great deal of research has been carried out into image segmentation

techniques. However almost all of this has been applied to incoherent

imagery. It is not a trivial extension to move from incoherent data to

coherent data and the techniques developed on incoherent imagery usually

fail when applied to coherent imagery. A review of existing segmentation

methods, given below, demonstrates this fact.

Segmentation techniques may be grouped into three main categories: region

fitting, region growing and edge detection. In addition to these three

main groupings of segmentation methods various smoothing operations have



been developed. These attempt to reduce or remove image noise whilst

maintaining the full image resolution.

Region Fitting Methods

Segmentation by region fitting is accomplished by attempting to fit a given

primitive template, or family of templates, to each portion of the input

Image.

One of the simplest implementations of this approach is the split and merge

technique [ref 3]. As the name suggests segmentation is achieved by either

joining adjacent regions together if they are similar or splitting a region

if it is found to be inhomogeneous. Specifically the procedure works as

follows. The algorithm begins by splitting the initial square image into a

series of square subimages. If any set of 4 adjacent subimages are

determined to be sufficiently similar they are merged to form one larger

square. Alternatively if any one subimage is determined to be

inhomogeneous it is split itself into 4 squares. The algorithm continues

in an interative manner until no more splitting or merging occurs.

Although the technique may be applied to coherent data there are several

objections to the algorithm. Firstly because the method operates by

producing square divisions of the original image then the final image tends

also to be compared of regions having a square shape. Secondly the regions

produced are start point dependent and homogeneous regions may be segmented

depending on their spatial position with respect to the square search

lattice. Finally the approach tends to lose small regions within otherwise

large uniform areas.

In an attempt to remove some of the problems associated with the split and

merge technique a facet model approach has been investigated [ref 4]. The

facet model assumes that the Image domain may be represented by a set of

facets (F(l) ... , F(X)). For each pixel in the facet F(k) the ideal gray

tone is taken to be a polynomial function of the pixels co-ordinates. The

facet assignments are made by fitting a polynomial function to the pixel

values within a square search window. The window is moved in single pixel

steps over the full image. Therefore if the window has a eize M each image

pixel Is included In M2 test windows and a least squares fitting procedure
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is used to determine the optimum facet parameters from the M2 choices.

Pixels with similar facet parameters are then grouped.

The algorithm performs poorly on areas in an image with length scales less

than the window size M. Such small regions are generally broken into

single pixels and as such remain effectively unclassified.

To apply the technique to coherent images would require an increase in the

window size in order to obtain a reasonable estimate of the polynomial

coefficients in the high multiplicative noise environment. Increase in

window size would clearly lead to a compounding of the problem outlined

above. Consequently the technique is unlikely to be of use in coherent

image segmentation.

Crimson and Pavlidis [ref 5) have recognised the failings as indicated

above of such fitting procedures. In an attempt to overcome the problem

they suggest measuring the residual between the fitted facet and the true

data. The form of this residual may be used to indicate when a

discontinuity has been encountered therefore removing the small

unclassified regions found above. However as Crimson and Pavlidis point

out such a method will only work if the discontinuity step is much larger

than the image noise. This restriction indicates that the technique would

only work on coherent data in certain situations when very large intensity

ratios are encountered.

Region Growing Techniques

The major problem with region fitting techniques, as outlined above is the

requirement that the data be fitted to a fixed window. The window must not

be large otherwise the results become confused when small length scales are

encountered. On the other hand the window must be large enough to enable

true discontinuities to be detected in the presence of noise. It is these

two conflicting requirements which cause the methods to fail on all but low

noise incoherent data. Clearly what is needed is a variable window fitting

procedure. Such methods are classed here as region growing techniques in

that any region is allowed to grow to any desired window shape and size.
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In order to achieve this effect Derin et al [ref 6] have applied the Bayes

smoothing algorithm to images modelled by Markov random fields. Briefly

the method works as follows. Initially a random image is generated.

Changes or relaxations are then made in this random image. A new image is

therefore generated which is, hopefully, a closer match to the original as

determined by some convenient measure of fit. Changes in the image which

cause a poorer fit to the data are also allowed. Such changes enable local

minima, encountered in the measure of fit, to be overcome. The process is

iterated. In order that the final image is not merely a replica of the

first constraints are built into the relaxation process to force the result

to conform to some initial model. Such a model might be simply that

neighbouring pixels should look similar. The particular problem faced by

Derin et al was concerned with additive noise but the process is clearly

extendable to multiplicative noise.

The approach is extremely powerful and produces good results. However

combinational considerations make the full process computationally too

expensive. In order to overcome this problem Derin et al [ref 61 have

simplified the image procedure. Three main approximations are used.

Firstly pixels are assumed only to interact (influence) directly their

nearest neighbours. Secondly the image is processed in strips 3 rows wide

thus reducing the possible image combinations. Finally the technique is

applied only to binary images, again further reducing the possible image

combinations.

Using these approximations the algorithm performs well in segmenting high

noise test data as well as real coherent data. Unfortunately these short-

cuts may be too restrictive to be of general use. However other methods of

off-setting the computational load do exist.

The number of calculations required to perform a full segmentation is

dependent on the initial guess at the result. To be fully general this

initial estimate is taken to be random as indicated above. Computation

time may therefore be saved if the process were seeded with the results of

a previous segmentation. Such a combination may provide a very powerful

segmentation tool, however the problem of generating the initial

segmentation needs to be solved.
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A different region growing algorithm has been suggested by Oddy and Rye

[ref 7] for use on coherent data. This algorithm operates in three stages.

Initially a smoothing filter is applied to the image. The filter operates

over a 3 x 3 window and the image is smoothed if the mean absolute

intensity difference over the window is less than some user supplied

threshold. This filter is applied iteratively typically up to 5 times with

different thresholds being supplied by the user at each iteration. The

second stage following the smoothing is a bonding process where pixels are

bonded if their values lie within a user supplied threshold. Finally

boundary tracing and filling is performed.

Clearly the major objection to this approach is the need for interactive

parameters. It has not proved possible to find fixed optimum parameters

which may be used on different images. This problem stems from the way in

which the segmentation proceeds with only 8 pixels at most ever being

considered. This results in a high sensitivity to noise. The method is

therefore of little use.

Edge Detection Methods

The final class of segmentation techniques is that of edge detection. Edge

detection techniques have been widely used to segment incoherent images.

Examples of edge operator's used in such work are the Robert's, Prewitt

and Sobel operators. These efectively calculate the gray level difference

over a 2 x 2, 3 x 3 or 5 x 5 mask. All of them work extremely poorly on

coherent data [ref 2]. The failure of all these methods is due to the use

of only small operator or mask sizes.

Frost et al [ref 2] have tried to overcome this problem by using a larger

window (9 x 9). As Frost et al point out the use of a large window can

easily introduce edge orientation problems and they suggest a method of

avoiding such problems as follows. For each position of the filter a test

is made to decide whether it is more likely the filter is lying in an

homogeneous region or is overlying an edge between two regions. To do this

the pixels within the window are tested to see if they iay be fitted best

by a single distribution or by two distributions.

The procedure works well with coherent images which have been incoherently

averaged over at least 7 independant realisatlons of the scene (7-look).
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For 4-look averaging the results are described as marginal whilst lower

degrees of averaging produce poor results. A major drawback to the

technique (as pointed out by Frost et al) is the size of the window. Due

to the relative complexity of the decisions made in this technique a

reasonably large window is required. It is therefore doubtful whether the

algorithm will work with imagery containing variable length scales and

variable region constrast ratios.

An alternative approach to the edge-detection technique has been proposed

by Don and Fu [ref 8]. Don and Fu, like Frost et al, have recognised the

Inadequacies of simple edge detection operators. The specific problem

solved by Don and Fu was that of finding a sea coast boundary. The

approach adopted being to initially divide the area into 16 x 16 subimages.

Each image is then classified as either sea or land according to a texture

measure. The Sobel edge operator was then applied in the vicinity of this

roughly detected boundary. Possible true positions of the sea-coast

boundary are then followed with a maximum of three candidates being held at

any one time. Fair results are obtained.

The specific example used above may of course be generalised. However it

may not always be desirable, or even possible to determine the classification

criteria used to find the approximate initial boundary. Without this first

step the problem would become copuationally expensive. Consequently it

is thought that such an anproach will not be generally useful.

It is obvious, if edge detection is to succeed, that an approach be adopted

which uses a variety of window sizes. A segmentation scheme employing this

idea has been suggested by Rosenfeld and Thurston [ref 9, ref 10]. Their

algorithm works as follows. Initially the image is convolved with a family

of edge operators which simply calculate the intensity difference between

two adjacent neighbourhoods. Neighbourhood sizes (d) are 1, 2, 4, 8 ....
2k - 1. Each pixel in the image therefore has k edge values. The problem

now arises as to which edge value to adopt. The edge value is chosen as

the value belonging to a neighbourhood size d for which the next smallest

meighbourhood does not produce a significant improvement in the intensity

difference. Significant here is taken as > 4/3. The procedure is outlined

for a one dimensional case in figure 1 where the size of the region

depicted is in fact the worst size as far as this mjthod is concerned.



In the absence of noise a window size of 8 would be selected here. However

only a slight noise perturbation would be required to cause a window size

of 16 to be chosen. It may be seen that in a high noise environment the

outputs of the various window sizes would be too unreliable to allow the

method to work successfully. Even without this added problem associated

with high noise values the method is only partially successful. Rosenfeld

and Thurston indicate that the method will only segment small isolated

regions or large uniform regions. Such a shortcoming is only to be

expected because the output values for neighbourhoods covering more than

one region will be highly confused. The technique is therefore of no use

for the segmentation of real coherent imagery.

So far the edge-detection techniques considered have generally used square

or rectangular windows with sharp edges. An alternative approach has been

used by Marr and Hildreth [ref 11], amongst others. The image (I), in this

technique, is convolved with a two-dimensional Gaussian function

G(r) = (1/2o 2)exp(-r 2/2c 2 ) (2)

Potential edges are initially found by applying the Laplacian operator

(r 21)to the convolved image and locating the zeros.

Several different sizes of Gaussian filter are used (differento 's) and the

final edge output is taken to be those points where the zeros from the

separate convolved images overlap. This technique might be expected 11ot to

work for the following reasons. Firstly large value of image noise are

likely to generate many zeros in V
2
(G*I) which do not correspond to true

edges. Secondly when the Gaussian filter is of a size comparable to that

of regions in the image the various zeros will be displaced away from the

true edges.

The latter point is accepted by Marr and Hildreth as a shortcoming.

However the noise encountered by Marr and Hildreth did not necessitate the

need for wide Gaussian filters. Consequently regions of interest in their

images nearly always has length scales larger than the filters. In a

high noise environment this will not be the case and the problem will be

severe.
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The problem of spurious zeros has been shown by Giess [ref 12] also to be

severe in coherent imagery. Consequently the technique is of no use for

the low level segmentation of coherent data. This has been demonstrated

by Giess [ref 12).

Smoothing Algorithms used to reduce noise effects

In all the cases considered above it Is the nature of the multiplicative

noise in coherent imagery which makes segmentation difficult. As mentioned

earlier several attempts have been made to reduce the effects of the noise

by various smoothing algorithms. One such smoothing procedure was used by

Oddy et al [ref 71 in their region growing algorithm described above. This

approach produced poor results. Indeed it has been shown that smoothing

filters In general offer little or no aid to segmentation procedures

[ref 13 ref 14]. Such a result might be anticipated. If accurate

decisions can be made in the smoothing process, using a given window size,

as to whether an edge exists or not then it should also be possible, in

principle, to perform a reasonable, if not quite perfect, segmentation

directly using the same size of window.

In summary, therefore, no satisfactory technique exists for the initial

low-level segmentation of coherent, or high-noise incoherent, imagery.

This failure is a direct result of the multiplicative noise in coherent

imagery. The high noise figures generated by this process mean that large

areas of pixels must be averaged to obtain accurate estimates of the

underlying distribution mean. The averaging requirement means the methods

suffer from either loss of resolution, loss of performance or excessive

computational expense.

The segmentatiLn procedure outlined lelow overcomes these shortcomings to a

great extent. In addition to this it is found to be generally applicable

to not only coherent data but to Incoherent data as well.
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3. THE SEGMENTATION ALGORITHM

The segmentation method outlined below is essentially an edge detection

process. Consequently the technique has a global model of the world

implicitly built in. This model assumes that scenes are composed of

different connected regions. Each region it is assumed, would, in the

absence of noise, have a uniform intensity throughout. The boundaries

between the regions are assumed to approximately form discontinuities.

Noise, either multiplicative or additive is assumed to corrupt these

ideal images.

The algorithm is iterative with each iteration containing two rin stages.

These being firstly the detection of probable edges and secondly the

generation of closed region boundaries. These are now considered in more

detail.

3.1 Detection of probable edges

The initial edge detection must overcome three major difficulties.

1. An automatic threshold must be selected which can reliably determine

whether an edge should be set or not.

2. A sufficient number of pixels must be averaged to obtain an edge image

which is relatively error free even for low contrast edges in the presence

of high noise.

3. The spatial resolution of high contrast edges must be preserved.

These are dealt with as follows:

3.1.1 Selection of an automatic edge detection threshold.

The edge detection process is composed itself of two parts. The first is a

convolution between the image and some edge enhancing mask. The output

from this stage produces an image of edge strengths. A second stage is

then applied which thresholds the edge strength image. Points with values

above the threshold are set to I whilst those below are set to 0. This

generates a second binary edge image. It is the selection of the threshold
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which is of interest here. Several threshold selection techniques are

given in the literature. One of the commonest is to simply set the top 5%

of the edge strength image to value I in the binary edge image. If we

consider an image which is in reality a single region then clearly there

should be no edges. However if the scheme outlined above is used edges

would be generated. This is clearly undesirable.

Alternatively an absolute threshold might he set. Unfortunately such as

scheme would not allow the algorithm to be generallsed. What is required

is some method of estimating when the variations within a given region in

the image are due solely to the noise. This is achieved as follows.

A standard deviation is calculated for each region in the image which is

given by

(7i-In) (3)

where I - averaged intensity for the region n andn

N = number of pixels in region n.

(Initially the full image is taken as one region).

The output from the edge operator is then divided by the standard

deviation of the region in which the centre of the edge operator mark lies.

This yields an edge strength normalised to unity standard deviation. The

normalised edge strength may then be compared to an absolute fixed

threshold. The fixed thresholds are estimated initially by comparing the

algorithms performance to human performance, but the final thresholds are

fixed by the algorithm itself.

The human eye can detect small regions in an image provided these regions

have a high region to background contrast. Larger regions may be detected

for lower contrast ratios. In order to roughly match the algorithms

performance to the human performance one particular region size is chosen.

This is a 20 pixel by 20 pixel square. A synthetic image is then generated

containing regions of this size with varying intensities on a background of

unity intensity. Noise is then allowed to corrupt the image. The

intensity ratio (R), at which the eye can just detect the regions, is

determined.
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As will be shown later computational considerations mean the algorithm is

slightly sub-optimal. Consequently it may be expected that the algorithm

will not work up to the standard generated by the eye. The intensity

rating (R) above therefore, may need to be relaxed somewhat, thus

generating a second ratio R. R will be fixed by the algorithm.

The algorithm (see later) works with several length scales. One of these

scales (15) roughly matches the region sizes (20 x 20) considered above.

This part of the algorithm is run on the test image. A relaxed ratio R'

and an edge detection threshold are consequently chosen to satisfy the

following. Of all the edges in the image 50% are found and simultaneously

of all the points set 50% are set on the true edges. This fixes R' as

1.04R also sets the threshold for this length scale in the algorithm. It

may be seen therefore that R is merely a guide to set R' rather than an

absolute parameter in itself. However it is also apparent that the values

of R and R' are similar. This suggests two possible conclusions. Firstly

the algorithm should match the eye's performance closely. Secondly as the

algorithm for computational reasons (see later), is set up in a sub-optimal

way the eye may in fact not offer an absolutely accurate segmentation.

A new synthetic image is now generated consisting entirely of noise. The

length scale considered above is run on the image and the number of edges

(all necessarily false) noted. This turns out to be 0.22% of pixels in the

image. The thresholds for the other length scales are set so as to

generate the same percentage of false edges. The question of thresholds

will be considered again in section 3.4.

The noise which as been allowed to corrupt the test images used above

should ideally be representative of the noise found in real images. The

following image types are considered to be of importance:

1. Coherent Images where pixel values represent the intensity of the

radiation incident on the receiver.

2. Coherent images whose pixel values represent the square root of the

intensity of the radiation incident on the receiver. (The dynamic range of

most imaging systems, including the eye, is too small to accomodate the

type of Imagery described above. However the problem may be overcome by

displaying the square root of the intensity.)
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3. Type 1 images displayed at a lower resolution with each low resolution

pixel representing an incoherent average over four neighbouring high

resolution pixels.

4. Type 2 images averaged as described in 3.

5. Incoherent imagery.

Coherent images are corrupted by multiplicative noise and additive noise

and incoherent images by additive noise. However the additive noise

component in coherent imagery is generally small. Indeed for the results

given later the additive noise component is roughly three orders of

magnitude smaller that the multiplicative component. The number of pixels

falsely set as edges in a uniform test image will depend on the particular

noise distribution given to the test image. These error rates are

virtually identical for image types 4 and 5 and very similar for types 2,

3, 4 and 5. The results for type 1 images do show a change but the change

is still small enough to allow the algorithm to produce satisfactory

results. Having said this the output from the algorithm will of course be

optimised if the correct image statistics are used.

The human eye has difficulty in segmenting down to the one pixel level in

type I or type 2 images due to the high multiplicative noise (speckle).

Consequently image types 3, 4 and 5 are the ones mainly considered.

3.1.2 The detection of low contrast edges without loss of resolution.

It was stated above that if a noisy image is viewed it soon becomes

apparent that the eye can detect small regions only if there is a high

contrast between the region brightness and the background brightness. As

the region size increases the human observer will accept regions as being

distinct for lower contrast ratios. This may be stated in a slightly

different way. High contrast ratios enable a region boundary to be placed

with a high spatial accuracy whilst low contrast ratios lead to a poorer

spatial accuracy. This single fact leads to the main basis of the edge-

detection portion of this algorithm.
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When first presented with a noisy image the eye tends to be drawn to the

bright areas. This suggests the algorithm should do the same.

Consequently the techniques first detects very high contrast edges using

edge enhancement operators with small length scales. Lower contrast edges

are then detected with larger operator masks.

The interaction between the various masks is controlled. The reason for

this will become apparent later.

Each edge enhancement operator is composed of a pair of windows of size N x

M as shown in figure 2 (N and M are odd). The intensity difference across

X - X is determined and compared to the threshold for this size of window.

If the difference exceeds the threshold the pixel (i, J) is set to 1,

otherwise to 0. The same procedure is carried out across Y - Y and the

final value for (I, J) is calculated by applying an OR function to the two

results.

3.1.2. i. The mask sizes and shapes.

It is computationally expensive to use masks at many orientations.

Consequently only two orientations are used vertical and horizontal. This

restriction may of course lead to difficulties when boundary orientations

do not match mask orientations. However if the masks are made long and

thin then these difficulties may be almost entirely removed. When

(N - 1)/2 - 2M then for the worst case, a line at 45* to the horizontal,

only -5% of the mask area is rendered unusable. Unfortunately when a mask

is long and thin its length can make it a little unwieldy in a complicated

Image. Ideally then more angles should be used thus allowing the above

condition to be relaxed to N - M. Such as window would have a compact

shape. This extension however is not used here for reasons of

computational speed.

The next question to be answered is what should the relative sizes of the

various windows be. The windows average over x M pixels.

Consequently this quantity should be considered when comparing the size of

different windows. To obtain an answer to the above question we again

appeal to the results obtained by eye. By considering various background

to region intensity differences for a given region size it is found that

15



the eye may only determine the value of a significant difference to within

approximately 20%.

As region size and intensity ratio are related this also implies an error

in determining a significant (ie detectable) region size of - 20%.

Consider window sizes N x M and V2N x /2M applied to a region of width N (1+/2)2

As the region size matches neither window perfectly then some information

is lost. The amount lost amounts to approximately 15-20% of the total

window area. Consequently the window averaging areas are set to have

ratios of -2.

The possible set of windows to be used is given in table 1. There are two

points here worthy of further comment. Firstly it will be seen that the

ratio (!- ): is significantly less than 2 for the 3 x 3 and 7 x 3

windows. It would therefore be beneficial to change the 3 x 3 windows to a

3 x 3 Sobel operator. For the 7 x 3 window, however, only 11% of the

available window area is lost for a boundary at 45* to the horizontal. The

benefit which might be obtained by implementing a 5 x 5 Sobel operator

instead is therefore not so obvious. Considering the way in which windows

of varying sizes interact (see section 3.1.2.11) the use of a 5 x 5 Sobel

detector would probably be detrimental to the algorithms performance. The

7 x 3 window is therefore retained as shown, but the 3 x 3 window is

replaced by a 3 x 3 Sobel edge operator.

The second point of interest in table I is that two windows have equal

values of : - x . This occurs for two reasons. As N is always odd it

is difficult t satisfy the condition for a doubling in ( -!-'x M whilst

still maintaining -- 2K Additionally the value of(- -- xM for this

window is approximately the central value in the geometric se ies of window

sizes. Consequently this window is of particular importance as it is

likely to match many length scales in an image. The use of two window

shapes for this size is an attempt to overcome the somewhat unwieldy

behaviour of the windows for this important length scale. Having said this

it may still be the case that the 31 x 3 window is superfluous. This has

yet to be determined.
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3.1.2. i. The interaction between different masks.

It has been stated so far that the masks described above are used in an

hierarchial manner. The particular form of this implementation will now be

considered in more detail.

Initially the 3 x 3 Sobel operators are applied to the image thus

generating an edge image consisting of 0's and l's. Wherever the density

of l's is low the 7 x 3 masks are then applied. More edges (l's) are

generated and combined with the existing ones via an OR function. The

subsequent masks are then applied in sequence.

It will be noted that masks are only applied where smaller masks have been

mostly unsuccessful in detecting edges. This is essential. If the

requirement was removed then bright areas would generate false alarms in

the larger masks due to the decrease in the thresholds used for these

masks. Specifically this protection is performed as follows.

If edge pixels are encountered in a mask then only part of the mask is used

(see figure 3). Whenever a region has enough contrast for its boundary to

be detected by a smaller window then edge pixels will be set. It may be

seen therefore that the use of the protection indicated in figure 3 will

stop the edge enhancement operator overlapping the already segmented

regions. However when a gap in a boundary is encountered the operator will

still function.

Clearly as we begin to reduce the number of pixels contributing to the edge

operator the error rate will increase. Therefore some limit must be placed

on the allowable reductions in size. It will be recalled that the eye

cannot determine a minimum detectable region size to better than

approximately 20%. If the number of pixels on each side of an operator is

allowed to drop by 20% then the error rate for falsely setting edges on a

blank image rises to 0.64%. The error rate for the full window being

0.22%. The new error rate is still small enough for the algorithm to cope

with. Consequently neither the new error rate nor the effective change in

threshold parameters (generated by a change in operator size) represent

significant changes.
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False edges in an image occur whenever the noise processes conspire to

generate a large value in the edge strength image. Very large deviations

of this sort are detected by the smaller windows in the algorithm.

Subsequent edge operators are therefore protected from the effects of large

noise induced deviations from the image mean. It is assumed that the noise

in the image is independent of position. Consequently we are unlikely to

encounter two areas, with large noise values close together. Hence it is

reasonable to allow the edge operators to be heavily reduced in size

whenever edges, created by previous operators, are encountered.

The program is now run in full on a test image of just noise. If a 75%

reduction in operator size is allowed then the number of pixels set for

each pair of windows (false edges) is found to represent - 0.3 - 0.5% of

the total number of pixels in the image. This is an acceptable error rate

for a single pair of edge operators according to the discussion above. The

total number of false edges (from all the edge operators) is found to be

4% of the image. It has been determined that this density of false edges

is also acceptable to the algorithm.

A reduction in edge operator mask sizes of 75% is appealing in other ways

as well. As the areas of consecutive edge operators have a ratio of 1:2

then the reduction of 75% described above allows any pixel to be tested by

at least two edge operators even in a complicated image. In addition to

this advantage the possible shapes an operator mask may take would appear

to be beneficial. In particular pixels may be protected within a mask such

that the effective overall length of the window (Neff) and the effective

overall width (Meff) are equal. In the absence of orientation problems

such a window shape would be most useful due to its compactness.

Fortunately the method by which pixels are removed from the active mask

area does greatly reduce the orientation problem.

As a result of all of the arguments given above an area reduction due to

the existence of previously set edges, of 75% is allowed in the edge

operator masks.

3.1.3 The detection of small regions.

Many images contain information down to the one or two pixel level.

However the edge operators described above have difficulty in dealing with
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such regions. Such regions are set as all edge (see figure 4). Thus all

information about the small region is lost as it now looks like one broad

edge. To overcome this problem a set of operators have been designed to

detect such regions explicitly. The operators are as shown in figure 5.

The following algorithm is used on the outputs

IF ((A 4 B).AND.(B 4 D))THEN

SET B(n+l)/2

IF (C / D) THEN

SET C(n+l)/2

The operation A is taken here as being identical to the operation in

the larger edge operators for determining whether an edge was present or

not. That is, depending on the value of n (An etc), a threshold is set at

some intensity difference. Edges are deemed to exist when the threshold is

exceeded.

The pixels set are then taken as regions in their own right rather than

edge pixels. This algorithm detects most of the one and two pixel wide

regions. It also ensures that the edges of larger regions are not falsely

set as being separate one pixel wide regions. Linear features up to 7

pixels in length are also detected to some extent but not particularly

efficiently.

3.2 The generation of closed region boundaries

In a noisy image any edge detection technique will generate a broken edge

image. The second stage of the algorithm generates an interpolation

between the broken edges thus producing closed regions.

Consider the edge image shown in figure 6. There are 5 regions in the

image as indicated. The algorithm should be designed so as to find these

regions. It works as follows, Initially disc like templates (see figure 7)

are stepped over the image. The number of edge pixels ncluded within the

template boundary is monitored. Whenever this number is zero the average

value of the original image covered by the template is written to an
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average image file. The final output of this stage of the algorithm is

therefore an average image which contains the mean pixel values of the

original image where no edges were found. The average image is unset

elsewhere. Such an output is indicated in figure 8.

A series of average images is obtained for various template sizes. Eight

disc like templates are used with M x N values of 64 x 8, 48 x 8, 32 x 4,

24 x 4, 16 x 12, 12 x 2, 8 x 1, 6 x 1. These are stepped over the image in

8, 8, 4, 4, 2, 2, 1, 1 pixel steps respectively. The disc templates are

followed by 4 square templates of size 4 x 4, 3 x 3, 2 x 2 and I x 1.

These are stepped using 1 pixel increments. The particular sizes of the

templates will be considered later. We now have 12 average images. These

are combined in the next stage of the algorithm.

The output from the largest template averaging operation is now taken.

Pixels which have been set and are adjacent are now grouped together thus

forming the image shown in figure 9. There are now 3 regions. These

regions may now only be grown. That is to say none of these 3 original

regions may be joined together nor may they be split at any subsequent

stage of this boundary generation portion of the algorithm. It should be

noticed that no account is taken of the average values of the set pixels

(shaded in figure 8) at this stage. Adjacency of set pixels is the only

criteria for joining. It will be recalled that edge pixels prevent joining

across a region boundary.

The average output derived from the next template is now added to the

current groupings shown in figure 9. Pixels which have been set in this

second averaged image and are adjacent to pixels in one of the 3 regions

shown in figure 9 are grouped together with the relevant original regions.

Pixels which may not be grouped thus are allowed to start new separate

regions. Pixels touching more than one of the original 3 regions are

joined to that region for which the average values are the closest match.

The output from this stage is shown in figure 10. The process is continued

until all the average images have been used. Finally the edge pixels are

combined into the regions in a similar manner.

It will be recalled from section 3.1.3 that small regions have been

detected directly. These are combined into the overall image in a

virtually identical manner to that described above. The main differences
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being as follows. Firstly the average images are set on)y where the

averaging templates entirely overlie edge pixels set by the small region

detection process. Secondly due to the size of the regions only 3 x 3,

2 x 2 and I x 1 square averaging templates are used.

As a result of the processes outlined above the segmented image should now

consist of a set of closed regions whose boundaries hopefully approximate

the real boundaries in the image fairly accurately. However due to the

approximations taken in forming the disc shapes and the sizes of the steps

used to scan the image we might expect slight errors to be made. It has

been found that regions may become broken due to the particular placing of

one or two noisy edge pixels. Consequently each boundary is tested for the

number of edge pixels it contains. If the boundary is not supported over

at least 20% of its length by edge pixels it is removed.

3.2.1 The relative sizes of the averaging templates.

The different templates are used to stop leakage between regions. If the

contrast across a boundary is low then the boundary will be heavily broken.

However for the boundary to be significant it must separate two large

regions. Consequently if a large essentially edge free area can be found a

large gap in any edge must occur before we allow leakage away into another

region.

Consider figure 11 which depicts the action of the 2 types of disc

operators on a broken edge. It may be seen for figures Ilai and liaii that

a "boundary" may be penetrated only if edge pixels occupy less than

approximately 67% and 50% of the boundary respectively. The percentages of

edge pixels required to avoid breaking the boundary in figures libi and

llbii are 50% and 33%. These figures are chosen as to roughly match the

decision point at which a human interpreter may consider a set of edge

pixels to constitute a boundary (50%). The ratios of successive template

sizes are chosen so that boundary breaking on the new template begins to

occur roughly where is ceased for the previous template as depicted in

figure 12. This fixes the relative sizes of the templazes.
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3.3 Iteration of the algorithm

In order to iterate the algorithm some measure should be devised to

determine whether the pixel intensity variations within a region in an

image are due entirely to noise. This measure is taken to be the standard

deviation averaged over the image as described below.

Initially is is uncertain whether the standard deviation measured for a

given image is due to its noise characteristics alone or whether variations

in underlying intensity offer significant contributions. The standard

deviation measure should therefore be able to distinguish between these two

situations. Consider an image region (Ik) corrupted by multiplicative

noise (N)

Ik'(i,J) = Ik(i,j).N(i,j) (4)

The underlying intensity is assumed to be constant for any single region.

This is the world model adopted for this edge detection algorithm. Hence

Ik'(i,J) - Iko.N(i,j) (5)

The noise is assumed to have a mean of I and so the normalised standard

deviation is found to be

ak (6

where nk is the number of pixels in the region k. An overall measure of

the standard deviation may be obtained by taking the mean value of the

normalised standard deviation for each image point (i,j). This is (for an

image with m regions)

k=m nkOk

Tm (7)
k-1 F nk

k-i

The value of this measure should reach a minimum when the image is

correctly divided into its component regions. Consequently OT is taken as

a valid measure of the algorithms progress. After each' pass of the the
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algorithm aT is calculated. If the new value for OT is less than the

previous value the program is iterated again.

The algorithm necessarily runs at least once. This is because no prior

knowledge of the expected image statistics Is required. Such a

generalisation allows the program to be run on images where the statistics

are not known or are known only approximately.

3.4 Post-processing

Several approximations have been made in the algorithm to allow for faster

computation. Among the approximations were the use of only two edge

operator orientations, the use of only a finite set of edge operators and

the use of only a small set of area averaging templates (section 3.2 and

3.2.1). Consequently we might expect the algorithm to behave slightly

suboptimally. Specifically we might expect it to generate some false

edges. Post-processing is therefore used to remove these. In order to

decide when we should join two regions together we appeal to the results of

the edge detection thresholds measured in section 3.1.1.

The threshold (T) applied to the edge strength image for an edge operator

with a half mask area of H is found to be proportional to 1H:

T = K VH (8)

The edge strength image (S) itself is given by

S - H I (SL - ) 1/c (9)

where 
1
JNL and pNR are the mean values of the pixels contained in the two

halves of the edge operator and a is the standard deviation of the region

in which the operator is centred.

Edges are set when S > T or

1 6 ( NL - NR) >

(ai/H) > K (10)

K is found to be 4.6.
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Consider now two adjacent regions in the final image. We take the case

which matches the calculation above. The two adjacent regions are

therefore assumed to have equal sizes H and have similar means and standard

deviation. The following condition must be satisfied if the regions are to

be left unjoined.

I > n 01+c 2

where Pi and a, are the mean and standard deviation for the regions. We

assume al + a2 _2o and hence

(o-P) > 2a (12)

Therefore the two conditions (10 and 12) are the same if a - K/2 = 2.3.

In testing the algorithm on various images whose statistics are

approximately known it is found the final overall measure of the standard

deviation is -40% above that expected for pure noise. It is assumed

therefore that each region has a standard deviation which is too large by

-40%. Consequently a is taken as (K/2)/1.40 to compensate.

RESULTS

The algorithm is designed to be a general purpose low-level segmenter for

any type of two-dimensional image. However it will be recalled from

section 3.1.2 that the output may be optimised if the algorithm is trained

on synthetic data having the same noise statistics as the images of

interest. The algorithm has been specifically trained on type 4 images

(section 3.1.2). Results obtained on such images might be expected

therefore to be better than results obtained from other image types.

The first sets of results are shown in figure 13. The original images

(13ai, 13bi, 13ci) are all examples of type 4 imagery. The three images

are chosen so as to represent as wide a range of length scales and image

scenes as possible to the algorithm. The images in 13aii, 13bii, 13cii

represent the output of the algorithm where each region is displayed with a

value equal to the average value of the pixels held in that region.

Figures 13aiii, 13biii, 13ciii show the final edge maps for the same

regions.
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Each original image contains 256 x 256 pixels (65536 pixels) whereas the

final outputs contain -1000 to -2000 regions. Thus a large data

reduction has been achieved without the loss of much structural

information. This level of data reduction whilst still retaining much of

the information is probably sufficient to allow higher level pattern

(shape, texture, etc) recognition processes to be used.

In addition to the results obtained using type 4 images, images from the

other image classes have been segmented. The algorithm, and the

parameters used in the algorithm are identical to those used to generate

the results in figure 13.

Figure 14 shows the output from the segmentation of an image of type 5

(incoherent data). It will be noticed that many regions have been

generated. This is due to the fact that the additive noise is small.

Consequently the algorithm is capable of detecting subtle changes within

the image. The low noise also allows the algorithm to detect small regions

fairly easily. However due to the problems outlined in section 3.1.3 many

such regions become broken or lost. The problem may be overcome by

resampling the image (expanding it). The subsequent segmentation (figure

15) is then found to avoid the problems associated with small regions.

The algorithm is capable of generating a great deal of information when the

noise content of an image is low. This is the case here with the

incoherent data. It is of course possible to reduce the number of regions

and information by raising the edge detection thresholds. This may be

beneficial in some cases. However it is probably better in general to allow

such data reduction to be performed by a subsequent higher level operation.

The algorithms performance on the remaining 3 classes of image is shown in

figures 16, 17, 18. Even though the algorithm has not been optimised to

run on such images the results are still acceptable. If prior knowledge is

available about the image statistics then the results may be slightly

improved. The improvement for type 1 images is expected to be the greatest

and may in fact be significant. It is interesting to note that the eye

also has great difficulty in segmenting this type of image. Consequently

we might expect the algorithm to reflect such behaviour.
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POSSIBLE IMPROVEMENTS TO THE ALGORITHM

Three possible extensions to the algorithm are proposed:

1. It is possible to implement the algorithm in parallel. The maximum

degree of parallelisation possible is roughly equal to the number of pixels

in the image. With the advent of the transputer a large degree of

parallelisation would indeed appear feasible.

2. The algorithm iterates by calculating a total measure of the standard

deviation. This method of measuring algorithm performance has its obvious

disadvantages. The most significant of these is that improvements in the

boundary accuracy of large regions tend to mask changes in the smaller

regions. To rectify the situation each region should be tested separately.

Preliminary results using this measure of segmentation accuracy suggest

significant improvements might be made.

3. Errors in the edge image (incorrectly set edge pixels) are at present

left untouched. The template averaging is then invoked to deal with them.

Preliminary results, however, suggest it may be possible to remove many

errors before this stage by the demanding that each edge pixel forms part

of an extended edge. The improvements obtained, according to the

preliminary results, again appear to be significant.

6. CONCLUSIONS

An algorithm has been presented which generates good low-level

segmentations of various types of image data. The results obtained are

qualitatively better than those obtained using previously reported

segmentation algorithms apart from the Bayes reconstruction methods

[ref 6]. The outputs from the Bayes Recontruction and from this algorithm

appear similar. However Bayes reconstruction is computationally

expensive.
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Possible extensions to the algorithm would appear to offer potentially

significant improvements In the segmentation.

The output from the algorithm appears to preserve a very high proportion of

the structural information in the image. This, coupled with a data

reduction of approximately 98% should enable higher level pattern

recognition techniques to be used. Such an approach has previously been

impossible for high noise imagery.

I

I
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TABLE 1 Window sizes used for the edge enhancement operators

Ratio to

N xM Nx /MN1 previous

3 x 3* 0.33 3

7 x 3 1.00 9 3.00

15 x 3 2.33 21 2.33

31 x 3 5.00 45 2.14

19 x 5 1.80 45 1.00

27 x 7 1.86 91 2.02

45 x 9 2.44 198 2.18

57 x 13 2.00 364 1.84

* REPLACED BY SOBEL OPERATOR (SEE TEXT)
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Figure 1. Optimum neighbourhood size selection for the edge detection

scheme given by Rosenfeld et al [ref 10]. In the absence of noise a

neighbourhood size of 8 would be selected.
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Figure 2. The segmentation scheme described in this paper begins by

detecting possible edges. These edges are detected using edge enhancement

operators as shown here. Shaded pixels are not used in the edge detection

process.

NNN

Figure 3. Whenever previously set edge pixels (marked by a cross) are

encountered by an edge enhancement operator parts of the edge mask are

removed from the calculation of an edge strength. These removed or

protected pixels are shaded.

ORIGINAL PROBABLE
IMAGE EDGE-DETECTED

IMAGE
Figure 4. Edge enhancement operators acting on small regions generate an
output which appears as all edge as indicated. This does not allow the

small region to be detected by later processing techniques and the region

is subsequently lost.
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Figure 5. Small regions are detected directly by the use of the operators
shown here.



EDGE PIXELS

Figure 6. A typical edge image after the detection of possible edge

pixels. Note both the false edges set in homogeneous regions and the

broken boundaries.

T N-

N N

Figure 7. Possible locations of homogeneous regions are detected by using

the disc-like templates shown in this figure. Regions are grown from the

positions where such templates may be placed without touching edge pixels.



Figure 8. A typical average image formed by averaging over the areas fixed

by valid positionings of the disc-like templates shown in figure 7.

0 , t.

*A I _-.

Figure 9. Regions are grown initially by using the average image (figure

8) for the largest disc template size (figure 7). Adjacent set pixels in

the average Image have been grouped together. Three regions have thus been

formed.
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Figure 10. The initial regions shown in figure 9 are now added to by using

the results from other average images. The region map shown here is a

result of adding the next average Image.



r

Figure 11. The disc templates shown in Figure 7 are used to create

continuous region boundaries. Their action when dealing with a possible

broken edge is shown here.

Figure 12. The amount of boundary leakage prevented by templates of
differing sizes ia shown here. It may be seen that as the larger template

begins to stop breaching the potential edge at the point where the smaller

template starts.
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